Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Elife ; 122023 02 10.
Article in English | MEDLINE | ID: covidwho-2241746

ABSTRACT

Individuals infected with the SARS-CoV-2 virus present with a wide variety of symptoms ranging from asymptomatic to severe and even lethal outcomes. Past research has revealed a genetic haplotype on chromosome 3 that entered the human population via introgression from Neanderthals as the strongest genetic risk factor for the severe response to COVID-19. However, the specific variants along this introgressed haplotype that contribute to this risk and the biological mechanisms that are involved remain unclear. Here, we assess the variants present on the risk haplotype for their likelihood of driving the genetic predisposition to severe COVID-19 outcomes. We do this by first exploring their impact on the regulation of genes involved in COVID-19 infection using a variety of population genetics and functional genomics tools. We then perform a locus-specific massively parallel reporter assay to individually assess the regulatory potential of each allele on the haplotype in a multipotent immune-related cell line. We ultimately reduce the set of over 600 linked genetic variants to identify four introgressed alleles that are strong functional candidates for driving the association between this locus and severe COVID-19. Using reporter assays in the presence/absence of SARS-CoV-2, we find evidence that these variants respond to viral infection. These variants likely drive the locus' impact on severity by modulating the regulation of two critical chemokine receptor genes: CCR1 and CCR5. These alleles are ideal targets for future functional investigations into the interaction between host genomics and COVID-19 outcomes.


Subject(s)
COVID-19 , Neanderthals , Virus Diseases , Humans , Animals , COVID-19/genetics , Neanderthals/genetics , SARS-CoV-2/genetics , Genetics, Population
2.
Front Microbiol ; 13: 1007081, 2022.
Article in English | MEDLINE | ID: covidwho-2080195

ABSTRACT

Recognition of viral infection by pattern recognition receptors is paramount for a successful immune response to viral infection. However, an unbalanced proinflammatory response can be detrimental to the host. Recently, multiple studies have identified that the SARS-CoV-2 spike protein activates Toll-like receptor 4 (TLR4), resulting in the induction of proinflammatory cytokine expression. Activation of TLR4 by viral glycoproteins has also been observed in the context of other viral infection models, including respiratory syncytial virus (RSV), dengue virus (DENV) and Ebola virus (EBOV). However, the mechanisms involved in virus-TLR4 interactions have remained unclear. Here, we review viral glycoproteins that act as pathogen-associated molecular patterns to induce an immune response via TLR4. We explore the current understanding of the mechanisms underlying how viral glycoproteins are recognized by TLR4 and discuss the contribution of TLR4 activation to viral pathogenesis. We identify contentious findings and research gaps that highlight the importance of understanding viral glycoprotein-mediated TLR4 activation for potential therapeutic approaches.

3.
Sci Rep ; 12(1): 12899, 2022 07 28.
Article in English | MEDLINE | ID: covidwho-1960506

ABSTRACT

The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has emphasized the serious threat to human health posed by emerging coronaviruses. Effective broadly-acting antiviral countermeasures are urgently needed to prepare for future emerging CoVs, as vaccine development is not compatible with a rapid response to a newly emerging virus. The green tea catechin, epigallocatechin gallate (EGCG), has broad-spectrum antiviral activity, although its mechanisms against coronavirus (CoV) infection have remained unclear. Here, we show that EGCG prevents human and murine CoV infection and blocks the entry of lentiviral particles pseudotyped with spike proteins from bat or highly pathogenic CoVs, including SARS-CoV-2 variants of concern, in lung epithelial cells. Mechanistically, EGCG treatment reduces CoV attachment to target cell surfaces by interfering with attachment to cell-surface glycans. Heparan sulfate proteoglycans are a required attachment factor for SARS-CoV-2 and are shown here to be important in endemic HCoV-OC43 infection. We show that EGCG can compete with heparin, a heparan sulfate analog, for virion binding. Our results highlight heparan sulfate as a conserved cell attachment factor for CoVs, and demonstrate the potential for the development of pan-coronavirus attachment inhibitors, which may be useful to protect against future emerging CoVs.


Subject(s)
COVID-19 Drug Treatment , Catechin , Animals , Antiviral Agents/pharmacology , Catechin/analogs & derivatives , Catechin/pharmacology , Heparitin Sulfate , Humans , Mice , Pandemics , SARS-CoV-2 , Tea
4.
Clin Invest Med ; 44(3): E4-10, 2021 10 03.
Article in English | MEDLINE | ID: covidwho-1604134

ABSTRACT

The 2020 Annual General Meeting (AGM) and Young Investigators' Forum of the Canadian Society for Clinical Investigation / Société Canadienne de Recherches Clinique (CSCI/SCRC) and Clinician Investigator Trainee Association of Canada/Association des Cliniciens-Chercheurs en Formation du Canada (CITAC/ACCFC) was the first meeting to be hosted virtually. The theme was "Navigating Uncertainty, Embracing Change and Empowering the Next Generation of Clinician-Scientists", and the meeting featured lectures and workshops that were designed to provide knowledge and skills for professional development of clinician investigator trainees. The opening remarks were given by Jason Berman (President of CSCI/SCRC), Tina Marvasti (President of CITAC/ACCFC) and Nicola Jones (University of Toronto Clinician Investigator Program Symposium Chair). Dr. Michael Strong, President of the Canadian Institutes of Health Research, delivered the keynote presentation titled "CIHR's COVID-19 Response and Strategic Planning". Dr. John Bell (University of Ottawa) received the CSCI Distinguished Scientist Award, Dr. Stanley Nattel (Université de Montréal) received the CSCI-RCPSC Henry Friesen Award (RCPSC; Royal College of Physicians and Surgeons of Canada) and Dr. Meghan Azad (University of Manitoba) received the CSCI Joe Doupe Young Investigator Award. Each scientist delivered talks on their award-winning research. The interactive workshops were "Developing Strategies to Maintain Wellness", "Understanding the Hidden Curriculum: Power and Privilege in Science and Medicine", "Hiring a Clinician Scientist Trainee: What Leaders Are Looking For" and "COVID-19: A Case Study for Pivoting Your Research". The AGM included presentations from clinician investigator trainees nationwide. Over 70 abstracts were showcased, most are summarized in this review, and six were selected for oral presentations.


Subject(s)
Biomedical Research , Research Personnel , Canada , Congresses as Topic , Humans
5.
Clinical and Investigative Medicine (Online) ; 44(3):E4-E10, 2021.
Article in English | ProQuest Central | ID: covidwho-1471292

ABSTRACT

The 2020 Annual General Meeting (AGM) and Young Investigators' Forum of the Canadian Society for Clinical Investigation / Société Canadienne de Recherches Clinique (CSCI/SCRC) and Clinician Investigator Trainee Association of Canada/Association des Cliniciens-Chercheurs en Formation du Canada (CITAC/ACCFC) was the first meeting to be hosted virtually. The theme was Navigating Uncertainty, Embracing Change and Empowering the Next Generation of Clinician-Scientists, and the meeting featured lectures and workshops that were designed to provide knowledge and skills for professional development of clinician investigator trainees. The opening remarks were given by Jason Berman (President of CSCI/SCRC), Tina Marvasti (President of CITAC/ ACCFC) and Nicola Jones (University of Toronto Clinician Investigator Program Symposium Chair). Dr. Michael Strong, President of the Canadian Institutes of Health Research, delivered the keynote presentation titled CIHR's COVID-19 Response and Strategic Planning. Dr. John Bell (University of Ottawa) received the CSCI Distinguished Scientist Award, Dr. Stanley Nattel (Université de Montréal) received the CSCI-RCPSC Henry Friesen Award (RCPSC;Royal College of Physicians and Surgeons of Canada) and Dr. Meghan Azad (University of Manitoba) received the CSCI Joe Doupe Young Investigator Award. Each scientist delivered talks on their award-winning research. The interactive workshops were Developing Strategies to Maintain Wellness, Understanding the Hidden Curriculum: Power and Privilege in Science and Medicine, Hiring a Clinician Scientist Trainee: What Leaders Are Looking For and COVID-19: A Case Study for Pivoting Your Research. The AGM included presentations from clinician investigator trainees nationwide. Over 70 abstracts were showcased, most are summarized in this review, and six were selected for oral presentations.

6.
Cell ; 184(9): 2276-2278, 2021 04 29.
Article in English | MEDLINE | ID: covidwho-1385220

ABSTRACT

Infection with SARS-CoV-2 sets off a molecular arms race between virus replication and host cell defense. In this issue of Cell, Flynn, Belk, et al. integrate an advanced large-scale RNA-centered approach with custom CRISPR screens to functionally characterize the interactome of the SARS-CoV-2 RNA genome during infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Friends , Host-Pathogen Interactions/genetics , Humans , RNA, Viral/genetics
7.
Cell Rep Med ; 2(3): 100223, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1135609

ABSTRACT

Accurate population surveillance of SARS-CoV-2 infection has been hampered by limited testing and inadequate serological assays. In a recent issue of Med, Hippich et al.1 describe a two-step antibody test with 100% specificity, revealing higher-than-reported SARS-CoV-2 exposure rates in children.


Subject(s)
Antibodies, Viral/blood , COVID-19/diagnosis , SARS-CoV-2/immunology , Asymptomatic Diseases , COVID-19/epidemiology , COVID-19/virology , COVID-19 Serological Testing , Child , Diabetes Mellitus, Type 1/pathology , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL